AI and Deep Learning
I have a strong interest in Computer Vision, Optimization, Artificial Intelligence, and their applications in healthcare.
|
|
NeRF Director
Wenhui Xiao, Rodrigo Santa Cruz, David Ahmedt-Aristizabal, Olivier Salvado, Clinton Fookes, Leo Lebrat.
CVPR, 2024
website /
code /
paper
|
|
Syn3DWound: A Synthetic Dataset for 3D Wound Bed Analysis
Leo Lebrat, Rodrigo Santa Cruz, Remi Chierchia, Yulia Arzhaeva, Mohammad Ali Armin, Joshua Goldsmith, Jeremy Oorloff, Prithvi Reddy, Chuong Nguyen, Lars Petersson, Michelle Barakat-Johnson, Georgina Luscombe, Clinton Fookes, Olivier Salvado, David Ahmedt-Aristizabal.
ISBI, 2024
website /
arxiv /
paper
|
|
Generalization Properties of Geometric 3D Deep Learning Models for Medical Segmentation
Leo Lebrat, Rodrigo Santa Cruz, Reuben Dorent, Javier Urriola Yaksic, Alex Pagnozzi, Gregg Belous, Pierrick Bourgeat, Jurgen Fripp, Clinton Fookes, Olivier Salvado.
ISBI, 2023
paper
|
|
DBCE: a saliency method for medical deep learning through anatomically-consistent free-form deformations
Joshua Peters, Leo Lebrat, Rodrigo Santa Cruz, Aaron Nicolson, Gregg Belous, Salamata Konate, Parnesh Raniga, Vincent Dore, Pierrick Bourgeat, Jurgen Mejan-Fripp, Clinton Fookes, Olivier Salvado.
WACV, 2023
paper
|
|
Quantifiable brain atrophy synthesis for benchmarking of cortical thickness estimation methods
Filip Rusak, Rodrigo Santa Cruz, Leo Lebrat, Ondrej Hlinka, Jurgen Fripp, Elliot Smith, Clinton Fookes, Andrew P Bradley, Pierrick Bourgeat.
Medical Image Analysis, 2022
dataset /
paper
|
|
CorticalFlow++: Boosting Cortical Surface Reconstruction Accuracy, Regularity, and Interoperability
Rodrigo Santa Cruz, Leo Lebrat, Darren Fu, Pierrick Bourgeat, Jurgen Fripp, Clinton Fookes, Olivier Salvado.
MICCAI, 2022
arxiv /
code /
paper
|
|
Generative Model of Brain Microbleeds for MRI Detection of Vascular Marker of Neurodegenerative Diseases
Saba Momeni, Amir Fazlollahi, Leo Lebrat, Paul Yates, Chistopher Rowe, Yongsheng Gao, Alan Wee-Chung Liew, Olivier Salvado.
Frontiers in Neurosciences, 2021
paper
|
|
Cortical Flow: A Diffeomorphic Mesh Deformation Network for Cortical Surface Reconstruction
Leo Lebrat, Rodrigo Santa Cruz, Frederic de Gournay, Pierrick Bourgeat, Jurgen Fripp, Darren Fu, Clinton Fookes, Olivier Salvado.
Conference on Neural Information Processing Systems (NeurIPS), 2021
website /
code /
paper /
slides
|
|
MongeNet: Efficient Sampler for Geometric Deep Learning
Leo Lebrat, Rodrigo Santa Cruz, Clinton Fookes, Olivier Salvado.
Conference on Computer Vision and Pattern Recognition (CVPR), 2021
website /
arxiv /
code /
slides
|
|
Going Deeper with Brain Morphometry using Neural Networks
Rodrigo Santa Cruz, Leo Lebrat, Pierrick Bourgeat, Vincent Doré, Jason Dowling, Jurgen Fripp, Clinton Fookes, Olivier Salvado.
IEEE 18th International Symposium on Biomedical Imaging (ISBI), 2021
arxiv /
paper /
poster
|
|
SMOCAM: SMOoth Conditional Attention Mask for 3D-Regression Models
Salamata Konate, Leo Lebrat, Rodrigo Santa Cruz, Pierrick Bourgeat, Vincent Doré, Jurgen Fripp, Andrew Bradley, Clinton Fookes, Olivier Salvado.
IEEE 18th International Symposium on Biomedical Imaging (ISBI), 2021
paper /
poster
|
|
DeepCSR: A 3D Deep Learning Approach for Cortical Surface Reconstruction
Rodrigo Santa Cruz, Leo Lebrat, Pierrick Bourgeat, Jurgen Fripp, Clinton Fookes, Olivier Salvado.
IEEE Winter Conference on Applications of Computer Vision (WACV), 2021
arxiv /
code /
slides
|
Math publications
Before joining CSIRO my research focused on Optimal Transport and Optimisation.
|
|
3/4-Discrete Optimal Transport
Leo Lebrat, Frederic de Gournay, Jonas Kahn.
SIAM Journal on Scientific Computing, 2020
arxiv /
paper /
code
|
|
Optimal Transport Approximation of 2-Dimensional Measures
Leo Lebrat, Frederic de Gournay, Jonas Kahn, Pierre Weiss.
SIAM Journal on Imaging Sciences, 2019
arxiv /
paper /
code
|
|
Differentiation and regularity of semi-discrete optimal transport with respect to the parameters of the discrete measure
Frederic de Gournay, Jonas Kahn, Leo Lebrat.
Numerische Mathematik, 2018
arxiv /
paper
|
|